
Robust Control Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robust Control Toolbox™ Release Notes
© COPYRIGHT 2005–2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

R2015b

Robust Tuning with systune Command or Control System
Tuner App: Automatically tune controllers to maximize
performance over a range of parameter values 1-2

Gain Scheduling with systune and slTuner: Automatically
tune the Lookup Table and Interpolation blocks used to
model gain-scheduled controllers in Simulink 1-3

tunableSurface Object: Parameterize and tune gain-
scheduled controllers using improved workflow 1-3

getNominal command for extracting nominal value of
uncertain model . 1-4

usample samples uncertain blocks and preserves other
control design blocks . 1-4

New property for limiting maximum frequency in random
samples of ultidyn . 1-5

Functionality being removed or changed 1-5

R2015a

Robust tuning of controller parameters against a set of plant
models specified through parameter variations in Control
System Tuner app . 2-2

iv Contents

Open Control System Tuner app with saved session from
command line . 2-2

R2014b

Quick Loop Tuning option in Control System Tuner app
for tuning control systems to target loop bandwidth and
stability margins . 3-2

Tuning goals for automated tuning to meet transient
response and disturbance rejection requirements 3-2

MATLAB code generation from Control System Tuner app for
automatically scripting control system tuning tasks 3-3

Enhanced constraints on controller dynamics for control
system tuning . 3-3

New syntax in TuningGoal.Poles for directly specifying
constraints on dynamics . 3-4

TuningGoal.StepResp renamed to
TuningGoal.StepTracking . 3-4

DisturbanceInput property of TuningGoal.Rejection renamed
to Location . 3-4

Functionality being removed or changed 3-5

R2014a

Control System Tuner app for automated tuning of control
systems . 4-2

v

Step response and LQG requirements for control system
tuning with systune and looptune commands 4-2

Improvements to TuningGoal requirements for control
system tuning . 4-3

Tuning Goals for constraining dynamics impose implicit
stability constraints . 4-3

Option to limit dynamics constraint to poles in a particular
feedback loop . 4-3

TuningGoal.Tracking allows specification of peak error . . 4-4
Specification of signal scaling in MIMO closed-loop Tuning

Goals . 4-4
Option to remove stability constraint from loop-shape and gain-

limiting Tuning Goals . 4-5
ScalingOrder property added to TuningGoal.Margins . . 4-5

Improved control system tuning of Simulink models with
systune or looptune functions using slTuner interface
(with Simulink Control Design) . 4-6

R2013b

Automatic tuning of gain-scheduled control systems with
systune and looptune commands . 5-2

Automatic tuning of discrete-time control systems with
systune and looptune commands . 5-2

Sensitivity, overshoot, minimum and maximum loop gain
requirements for control system tuning with looptune and
systune . 5-3

looptuneSetup command for switching from looptune to
systune to use additional systune functionality 5-3

hinfnorm command for computing H∞ norm 5-4

Some properties of TuningGoal requirements renamed 5-4

vi Contents

Power iteration method option for structured singular value
computation with mussv . 5-5

Option to specify feedback sign for stability margin
calculation with ncfmargin . 5-5

R2013a

Minimum damping requirement for closed-loop poles in
TuningGoal.Poles object . 6-2

TuningGoal.Rejection object for specifying disturbance
rejection requirement . 6-2

looptune returns detailed results from multiple random
starts . 6-2

Additional automated tuning examples 6-3

R2012b

systune command for multiobjective tuning with soft and
hard constraints . 7-2

H2 performance, stability margin, pole location, and
disturbance rejection requirements 7-2

Robust tuning of one controller against a set of plant
models . 7-3

Option to constrain tuned parameter values and to restrict
some tuning requirements to a frequency band 7-3

vii

ltiblock.pid2 and loopswitch objects for tuning two-
degree-of-freedom PID controllers and marking loop
opening sites for open-loop requirements 7-4

TuningGoal.MaxGain and GainLimit property renamed . . . 7-4

Options in hinfstructOptions and looptuneOptions
renamed or removed . 7-5

R2012a

Parallel Computing Support for looptune and hinfstruct . . 8-2

Faster and More Accurate H-infinity Norm Computation
Using SLICOT Algorithms . 8-2

R2011b

looptune Tunes Fixed-Structure Control Systems 9-2

Control System Tuning for Simulink Models with looptune or
hinfstruct Using slTunable Interface 9-2

wcgainplot for Visualizing Worst-Case Gains 9-3

Functionality Being Removed or Changed 9-3

R2011a

Enhanced Workflow for H-Infinity Synthesis of Fixed-
Structure Control Systems . 10-2

viii Contents

R2010b

New Commands for H-Infinity Synthesis of Fixed-Structure
Control Systems . 11-2

R2010a

Bug Fixes

R2009b

New Option to Improve Robust Performance by Accounting
for Real Uncertain Parameters . 13-2

New Command to Linearize Simulink Models with
Uncertainty . 13-2

New Interface for Simulating Effects of Uncertainty in
Simulink Models . 13-2

New Command to Model Multiple LTI Responses as One
Uncertain System . 13-3

New and Updated Demos . 13-3

Functions, Properties and Blocks Being Removed 13-3

ix

R2009a

Bug Fixes

R2008b

Bug Fixes

R2008a

Ability to Use LOOPMARGIN with Simulink 16-2

R2007b

No New Features or Changes

R2007a

New Simulink Blocks . 18-2

x Contents

R2006b

New Function ltiarray2uss . 19-2

R2006a

No New Features or Changes

R14SP3

No New Features or Changes

R14SP2

mussvunwrap Is Renamed . 22-2

New Functions actual2normalized and normalized2actual 22-2

R2015b
Version: 6.0

New Features

Bug Fixes

Compatibility Considerations

R2015b

1-2

Robust Tuning with systune Command or Control System Tuner App:
Automatically tune controllers to maximize performance over a range of
parameter values

Control System Tuner and the systune command now tune control systems for
robustness against real parameter uncertainty in the plant. You represent parameter
uncertainty in your control system model using uncertain real parameters ureal or uss.
The software automatically finds the worst combinations of parameter values and tunes
the controller to maximize performance over the parameter uncertainty range.

In MATLAB®, build a generalized state-space (genss) model of your control system using
ureal or uss blocks to represent real parameter uncertainty in the plant. You can tune
the model with systune or in Control System Tuner exactly as you would for a tunable
control system model without uncertainty. For a detailed example, see “Robust Tuning of
Positioning System”.

In Simulink®, use linearization with block substitution to replace one more blocks in the
model with uncertain values represented by ureal or uss objects. (Requires Simulink
Control Design™ software.) See “Robust Tuning of Mass-Spring-Damper System”.

In both cases, when you tune the model, the software automatically adjusts the tunable
components to achieve the specified performance as well as possible throughout the
uncertainty range. Analysis plots automatically display random samples of the uncertain
system to give you a visual sense of the performance variation.

For more information about robust tuning generally, see “Robust Tuning Approaches”.

Compatibility Considerations

Previously, when you used systune to tune a model that had uncertainties, the software
would set the uncertain blocks to their nominal values before tuning the system. Now,
systune tunes the model for robustness against those uncertainties. To recover the old
behavior, i.e., to tune a controller for the nominal system only, use getNominal to obtain
the nominal value. For example:

[CL,fSoft,GHard,info] = systune(getNominal(CL0),SoftReqs,HardReqs);

In this example, CL0 is a genss model containing uncertain blocks.

1-3

Gain Scheduling with systune and slTuner: Automatically tune the
Lookup Table and Interpolation blocks used to model gain-scheduled
controllers in Simulink

You can now use the slTuner interface to automatically tune control systems modeled
in Simulink in which plant dynamics change with operating conditions or time. (Requires
Simulink Control Design software.)

In such gain-scheduled control systems, the controller gains vary as a function of
one or more scheduling variables. In the Simulink model, use the Lookup Table or
Interpolation blocks to implement the variable controller gains. You then use the
new tunableSurface command to parameterize the dependency of these gains on
the scheduling variables. The software automatically tunes the coefficients of that
parameterization so that the control system meets the tuning requirements you specify
over the entire grid of scheduling-variable values. The software also writes the tuned
coefficients back to the Lookup Table or Interpolation blocks.

In previous releases, you could not parameterize Lookup Table or Interpolation blocks
in terms of the functional form of its dependence on the scheduling variable. As a result,
you could not automatically tune a gain-scheduled control element and write the tuned
coefficients back to the Simulink model. Using systune to tune and implement gain-
scheduled controllers required a complex process of manually extracting coefficient
values and inserting them in the blocks.

For more details, see “Set Up Simulink Models for Gain Scheduling”.

For examples showing how to use tunableSurface to tune gain-scheduled controllers
implemented with Lookup Table blocks, see:

• “Gain-Scheduled Control of a Chemical Reactor”
• “Tuning of Gain-Scheduled Three-Loop Autopilot”

tunableSurface Object: Parameterize and tune gain-scheduled
controllers using improved workflow

The new tunableSurface object lets you express gain in terms of tunable parameters
for tuning gain-scheduled controllers with systune. In such gain-scheduled control
systems, the controller gains vary as a function of one or more scheduling variables.
You parameterize the dependency of controller gains on the scheduling variables. The
software automatically tunes the coefficients of that parameterization so that the control

R2015b

1-4

system meets the tuning requirements you specify over the entire grid of scheduling-
variable values. tunableSurface replaces the gainsurf command.

In previous releases, you could use the gainsurf command to represent tunable surfaces
for control system tuning. With that command, you had to explicitly supply the values of
the gain surface calculated over the grid of design points. tunableSurface simplifies
that workflow by allowing you to specify the gain surface in terms of functions of the
scheduling variables, such as the basis functions of a polynomial expansion.

For more details about creating tunable gain surfaces, see:

• “Parametric Gain Surfaces”
• tunableSurface reference page

Compatibility Considerations

tunableSurface replaces gainsurf, which was used in previous releases to
parameterize controller gains as functions of scheduling variables. gainsurf still
works, but might be removed in a future release. If you have scripts or functions that use
gainsurf, consider updating them to use tunableSurface instead.

getNominal command for extracting nominal value of uncertain model

Use getNominal to replace the uncertain elements of a generalized model with their
nominal values. All other control design blocks in the generalized model are unchanged.
For example, suppose that M is a generalized state-space (genss) model that has both
uncertain blocks and tunable blocks. The command getNominal(M) returns a genss
model having the same tunable blocks as M.

For more information, see the getNominal reference page.

usample samples uncertain blocks and preserves other control design
blocks

The usample command now preserves any non-uncertain control design blocks when you
use it to sample the uncertain elements of a generalized model. For example, suppose
that M is a generalized state-space (genss) model that has both uncertain blocks and
tunable blocks. The command usample(M,N) samples the uncertain blocks, and returns
an array of genss models having the same tunable blocks as M.

1-5

Compatibility Considerations

Previously, when applied to models having tunable control design blocks, usample used
the current (nominal) value of those blocks, and returned an array of numeric models.
To recover the previous behavior, use getValue. For example, the following command
randomly samples the uncertain blocks of M, replaces the tunable blocks of M with their
current values, and returns an array of numeric state-space models.

Msamp = getValue(usample(M,N));

New property for limiting maximum frequency in random samples of
ultidyn

Use the SampleMaxFrequency property of ultidyn to limit the natural frequency of
dynamics when you take random samples of ultidyn blocks. For example, the following
command creates SISO uncertain dynamics.

dH = ultidyn('dH',[1 1],'SampleMaxFrequency',1);

When you take random samples of dH, such as with usample, the dynamics of the
samples are no faster than 1 rad/s. The default value of SampleMaxFrequency is Inf
(no limit).

Also, the SampleStateDim property of ultidyn is changed to
SampleStateDimension.

Compatibility Considerations

The property name SampleStateDim still works, but might be removed in a later
release. If you have scripts or functions that use SampleStateDim, consider updating
them to use SampleStateDimension instead.

Functionality being removed or changed

Functionality Result Use This Instead Compatibility
Considerations

systune(CL0,...)

where CL0 contains
uncertain blocks

Tunes robustly
against real
parameter
uncertainty in CL0

systune(getNominal(CLO),...)Previously, systune
used the nominal
value of all uncertain
blocks in the tuned

R2015b

1-6

Functionality Result Use This Instead Compatibility
Considerations

model. Now, use
getNominal

explicitly to tune
for the nominal
system only. See
“Robust Tuning
with systune
Command or Control
System Tuner App:
Automatically
tune controllers
to maximize
performance over a
range of parameter
values” on page
1-2.

gainsurf Still works tunableSurface If you have scripts
or functions that use
gainsurf, consider
updating them to use
tunableSurface

instead. See
“tunableSurface
Object: Parameterize
and tune gain-
scheduled controllers
using improved
workflow” on page
1-3

1-7

Functionality Result Use This Instead Compatibility
Considerations

usample(M,N) Samples uncertain
control design blocks
of M, and preserves
other control design
blocks

getValue(usample(M,N))Previously, usample
used the current
value of non-
uncertain control
design blocks. See
“usample samples
uncertain blocks
and preserves other
control design
blocks” on page
1-4

SampleStateDim

property of ultidyn
Still works SampleStateDimensionConsider replacing

SampleStateDim

with
SampleStateDimension.

R2015a
Version: 5.3

New Features

Bug Fixes

R2015a

2-2

Robust tuning of controller parameters against a set of plant models
specified through parameter variations in Control System Tuner app

When you use Control System Tuner to tune a Simulink model of a control system, you
can now generate multiple plant models by varying model parameters. You can then tune
the control system to satisfy your specified tuning goals for all the resulting models.

Tuning to multiple models is useful to help ensure that the tuned control system is
robust against parameter variations or changes in operating conditions. For example, if
a parameter in your Simulink model represents a process temperature, you can generate
multiple models spanning the range of expected temperature variations, and tune your
control system to meet your design requirements for all those models at once.

For more information about tuning control systems for multiple models in Control
System Tuner, see Robust Tuning Using Multiple Plant Models in Control System Tuner.
For an example showing how to specify parameter variations for tuning with Control
System Tuner, see Tuning Control System with Multiple Valued Plant Parameters using
Control System Tuner.

Open Control System Tuner app with saved session from command line

Use the new syntax controlSystemTuner(sessionfile) to open Control System
Tuner and load data from a saved session. When you use Control System Tuner, you

can click Save Session to save session data to disk such as tuning goals you have
created, response I/Os you have defined, operating points, and stored designs. The string
sessionfile is the name of a session data file saved in the current working directory or
on the MATLAB path. The software also opens the Simulink model associated with the
saved session.

http://www.mathworks.com/help/releases/R2015a/robust/gs/simultaneous-tuning-of-multiple-models.html
http://www.mathworks.com/help/releases/R2015a/robust/examples/tuning-control-system-with-multiple-valued-plant-parameters-using-control-system-tuner.html
http://www.mathworks.com/help/releases/R2015a/robust/examples/tuning-control-system-with-multiple-valued-plant-parameters-using-control-system-tuner.html

R2014b
Version: 5.2

New Features

Bug Fixes

Compatibility Considerations

R2014b

3-2

Quick Loop Tuning option in Control System Tuner app for tuning control
systems to target loop bandwidth and stability margins

Quick Loop Tuning lets you use a loop-shaping approach to tune SISO or MIMO feedback
loops in Control System Tuner. You can use Quick Loop Tuning to tune control systems
modeled in MATLAB or Simulink. With Quick Loop Tuning you can tune your system to
meet target gain crossover and margin requirements without explicitly creating tuning
goals that capture these requirements. You specify feedback loops to tune by selecting
the control signals and measurement signals in a block diagram of your control system.
Control System Tuner adjusts the tunable parameters of your system such that the open-
loop gain crossover falls within the desired frequency range with the gain and phase
margins you specify.

For more information about using Quick Loop Tuning, see Quick Loop Tuning of
Feedback Loops in Control System Tuner.

Tuning goals for automated tuning to meet transient response and
disturbance rejection requirements

New tuning goals let you explicitly specify a target transient response or a minimum
disturbance rejection in a tuned control system. These tuning goals are available both in
Control System Tuner and at the command line when tuning with systune.

The transient response goal lets you shape how the closed-loop system responds to a
specific input signal. You specify the desired transient response as a reference model.
The target transient response is the response of the reference model to an impulse, step,
ramp, or custom input signal. To use the transient response goal:

• In Control System Tuner, in the Tuning tab, in the New Goal menu, select
Transient Response Matching.

• At the command line, specify the design requirement using TuningGoal.Transient.

The step rejection goal lets you specify a minimum standard for rejecting disturbances.
You specify characteristics such as the maximum amplitude and settling time of the
response at some point in your control system to a step disturbance injected at another
point in the system. Alternatively, specify a reference system whose response to step
input is the target response. To use the step rejection goal:

• In Control System Tuner, in the Tuning tab, in the New Goal menu, select
Rejection of Step Disturbances.

http://www.mathworks.com/help/releases/R2014b/robust/gs/quick-loop-tuning-of-feedback-loops-in-control-system-tuner.html
http://www.mathworks.com/help/releases/R2014b/robust/gs/quick-loop-tuning-of-feedback-loops-in-control-system-tuner.html
http://www.mathworks.com/help/releases/R2014b/robust/ref/tuninggoal.transient-class.html

3-3

• At the command line, specify the design requirement using
TuningGoal.StepRejection.

MATLAB code generation from Control System Tuner app for
automatically scripting control system tuning tasks

You can now generate a MATLAB script for control system tuning from Control System
Tuner. Generated MATLAB scripts are useful when you want to programmatically
reproduce a result you obtained interactively. You can also use generated code to perform
multiple tuning operations with systematic variations in tuning configurations such as
model operating point or tuning goals.

For more information, see Generate MATLAB Code from Control System Tuner for
Command-Line Tuning.

Enhanced constraints on controller dynamics for control system tuning

New functionality gives you more flexibility when specifying constraints on
controller dynamics for control system tuning. The following new features are
available in both Control System Tuner using Controller Poles Goal and when
tuning at the command line using TuningGoal.ControllerPoles (formerly
TuningGoal.StableController).

• You can now specify a minimum damping constant for the poles of a tunable block.
Previously, the damping constant of controller poles could take any value between
zero and 1.

• You can now specify a negative value for the minimum decay rate of controller poles,
allowing for unstable controllers. Previously, the minimum decay rate had to be
positive, and therefore always enforced the stability of the constrained block.

• Fixed integrators in the constrained tunable block are no longer considered when
evaluating the constraint. In other words, the tuning goal now constrains locations of
all poles in the block except fixed integrators, such as the I term in a PID controller.

For more information about these features, see:

• Controller Poles Goal, for tuning in Control System Tuner.
• The TuningGoal.ControllerPoles reference page, for tuning at the command line.

http://www.mathworks.com/help/releases/R2014b/robust/ref/tuninggoal.steprejection-class.html
http://www.mathworks.com/help/releases/R2014b/robust/gs/generate-matlab-code-for-control-system-tuner-session.html
http://www.mathworks.com/help/releases/R2014b/robust/gs/generate-matlab-code-for-control-system-tuner-session.html
http://www.mathworks.com/help/releases/R2014b/robust/gs/stable-controller-goal.html
http://www.mathworks.com/help/releases/R2014b/robust/ref/tuninggoal.controllerpoles-class.html

R2014b

3-4

Compatibility Considerations

TuningGoal.StableController has been renamed to
TuningGoal.ControllerPoles. Scripts and functions that use
TuningGoal.StableController do not generate errors. However,
TuningGoal.StableController will not be maintained in future releases. You
should replace instances of TuningGoal.StableController in your code with
TuningGoal.ControllerPoles.

New syntax in TuningGoal.Poles for directly specifying constraints on
dynamics

When you use TuningGoal.Poles to constrain the dynamics of a tuned control system,
you can now directly specify the minimum decay rate, minimum damping, and maximum
natural frequency when you create the tuning goal. To do so, use the following syntaxes:

R = TuningGoal.Poles(MinDecay,MinDamping,MaxFreq);

R = TuningGoal.Poles(Location,MinDecay,MinDamping,MaxFreq);

Previously, to specify such constraints on controller dynamics, you had to first create
the tuning goal, and then modify its MinDecay, MinDamping, and MaxFrequency
properties.

For more information, enter see the TuningGoal.Poles reference page.

TuningGoal.StepResp renamed to TuningGoal.StepTracking

The tuning requirement TuningGoal.StepResp is now called
TuningGoal.StepTracking.

Compatibility Considerations

Scripts and functions that use TuningGoal.StepResp do not generate errors. However,
TuningGoal.StepResp will not be maintained in future releases. You should replace
instances of TuningGoal.StepResp in your code with TuningGoal.StepTracking.

DisturbanceInput property of TuningGoal.Rejection renamed to Location

The DisturbanceInput property of the tuning requirement TuningGoal.Rejection
is now called Location, to unify the names of similar properties of several tuning

http://www.mathworks.com/help/releases/R2014b/robust/ref/tuninggoal.poles-class.html

3-5

requirements. If Req is a TuningGoal.Rejection requirement, you can access this
property using Req.Location.

Compatibility Considerations

Scripts and functions that use the DisturbanceInput property do not generate errors.
However, the DisturbanceInput property will not be maintained in future releases.
You should replace instances of DisturbanceInput in your code with Location.

Functionality being removed or changed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

TuningGoal.StableControllerStill works TuningGoal.ControllerPolesConsider replacing
TuningGoal.StableController

with
TuningGoal.ControllerPoles.

TuningGoal.StepRespStill works TuningGoal.StepTrackingConsider replacing
TuningGoal.StepResp

with
TuningGoal.StepTracking.

DisturbanceInput

property of
TuningGoal.Rejection

Still works Location property Consider replacing
DisturbanceInput

with Location.

R2014a
Version: 5.1

New Features

Bug Fixes

Compatibility Considerations

R2014a

4-2

Control System Tuner app for automated tuning of control systems

The new Control System Tuner lets you interactively tune SISO or MIMO control
systems modeled in MATLAB or Simulink. Control System Tuner tunes the control
system parameters to meet design requirements you specify, such as reference tracking,
disturbance rejection, stability margins, loops shapes, and sensitivity. You can examine
multiple system responses in both the time and frequency domains to evaluate
performance of the tuned control system.

If you have Simulink Control Design software, you can tune a control system represented
by a Simulink model. Control System Tuner can tune most blocks used to create a
control system in Simulink. These blocks include Gain, PID Controller, Transfer
Fcn, State-Space, Zero-Pole, Discrete Filter, and the LTI System block. Any
controller architecture created using these blocks can be tuned. To access Control System
Tuner for tuning a Simulink model, select Analysis > Control Design > Control
System Tuner.

Control System Tuner can also tune a control system represented by a tunable genss
model. Any control architecture constructed with Control Design Blocks such as
ltiblock.pid, ltiblock.tf, or realp blocks can be tuned. To open Control System
Tuner for tuning a control system modeled in MATLAB, use the controlSystemTuner
command.

For more information about using Control System Tuner, see:

• Automated Tuning Basics
• Tuning with Control System Tuner

Step response and LQG requirements for control system tuning with
systune and looptune commands

New TuningGoal requirement objects allow you to specify tuning objectives for
automated tuning of control systems with systune and looptune.

• TuningGoal.StepResp — Requires that the step response between specified
locations in the control system match the step response of a specified reference
system. For details about this requirement, see the TuningGoal.StepResp reference
page.

http://www.mathworks.com/help/releases/R2014a/robust/ref/controlsystemtuner.html
http://www.mathworks.com/help/releases/R2014a/robust/automated-tuning-basics.html
http://www.mathworks.com/help/releases/R2014a/robust/tuning-with-control-system-tuner-app.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.stepresp-class.html

4-3

• TuningGoal.LQG — Specifies a linear-quadratic-gaussian (LQG) goal for control
system tuning. This requirement lets you quantify control performance as an LQG
cost. For details about this requirement, see the TuningGoal.LQG reference page.

Improvements to TuningGoal requirements for control system tuning

This release introduces a variety of improvements to TuningGoal requirement objects
for automated tuning of fixed-structure control systems with systune and looptune.

Tuning Goals for constraining dynamics impose implicit stability constraints

TuningGoal.StableController and TuningGoal.Poles now impose implicit
stability constraints on controller or system dynamics. This allows you to require poles of
the controller or the closed-loop control system to be stable, without necessarily limiting
the minimum decay or maximum frequency of those poles. Previously, you had to specify
finite values for minimum decay and maximum frequency when using these tuning goals.

Compatibility Considerations

The default values of the MinDecay and MaxFrequency properties of these requirements
have changed. If you have scripts that use TuningGoal.StableController or
TuningGoal.Poles requirements with default values, update those scripts to explicitly
set the finite values you want.

Property Previous Default Value New Default Value

TuningGoal.Poles.MinDecay

TuningGoal.StableController.MinDecay

1e-6 0

TuningGoal.Poles.MaxFrequency

TuningGoal.StableController.MaxFrequency

1e6 Inf

TuningGoal.Poles.MinDamping1e-6 0

Option to limit dynamics constraint to poles in a particular feedback loop

A new syntax for creating the TuningGoal.Poles requirement allows you to constrain
only the poles of the sensitivity function measured at a specified location. Use this syntax
to narrow the scope of the requirement to a particular feedback loop.

http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.lqg-class.html

R2014a

4-4

For example, suppose you have a cascaded-loop control system in which the inner
and outer loops contain loop-opening locations 'InnerLoop' and 'OuterLoop',
respectively. The following command uses the new syntax to constrain the poles of the
inner loop sensitivity function:

Req = TuningGoal.Poles('InnerLoop');

Req.MinDamping = 0.5;

Req.Openings = 'OuterLoop';

Req imposes a minimum damping on the poles of the inner loop sensitivity function
measured with the outer loop open. The dynamics of blocks that do not participate to the
inner loop are ignored.

For more information about using this constraint, see the TuningGoal.Poles reference
page.

TuningGoal.Tracking allows specification of peak error

A new syntax for creating the TuningGoal.Tracking requirement allows you to specify
a maximum tracking error for a particular input-output pair in terms of a response time,
a relative DC error, and a peak relative error across all frequencies. These parameters
are converted to the following expression for the maximum tracking error:

MaxError
PeakError DCError

=
() + ()

+

s

s

c

c

w

w
.

For more information about how to specify tracking error requirements, see the
TuningGoal.Tracking reference page.

Specification of signal scaling in MIMO closed-loop Tuning Goals

New properties in several closed-loop Tuning Goals allow you to specify the relative
amplitudes of multiple input and output signals in the loops constrained by the
requirements. Use these properties to reduce cross-coupling in tuned systems when the
choice of units results in a mix of small and large signals.

• TuningGoal.Tracking and TuningGoal.Overshoot now have an InputScaling
property. This information is used to scale the off-diagonal terms in the transfer
function from reference to tracking error. This scaling ensures that cross-couplings
are measured relative to the amplitude of each reference signal.

http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.poles-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.tracking-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.tracking-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.overshoot-class.html

4-5

• TuningGoal.Gain and TuningGoal.Variance now have InputScaling and
OutputScaling properties. The values you set for these properties are used to scale
the closed-loop transfer function T(s) on which you impose the tuning requirement.
The requirement is evaluated for the scaled transfer function Do

–1T(s)Di. Do and Di are
diagonal matrices formed from the OutputScaling and InputScaling property,
respectively.

For more information on how to interpret and use these properties, see the reference
pages for the Tuning Goals.

Option to remove stability constraint from loop-shape and gain-limiting Tuning Goals

The new Stabilize property of loop-shaping and gain-limiting Tuning Goals allows
you turn off the implicit closed-loop stability constraint. If stability for the specified loop
is not required or cannot be achieved, set Stabilize to false to relax the stability
constraint.

This property is available for the following Tuning Goals:

• TuningGoal.LoopShape
• TuningGoal.Gain, TuningGoal.WeightedGain
• TuningGoal.MinLoopGain,TuningGoal.MaxLoopGain

For more information on how to use the Stabilize property, see the reference pages for
the Tuning Goals.

ScalingOrder property added to TuningGoal.Margins

The TuningGoal.Margins tuning goal has a new property, ScalingOrder. This property
controls the number of states in the diagonal scalings involved in computing MIMO
stability margins. Increasing the order may improve results at the expense of increased
computations.

Previously, this scaling order was set as a tuning option in systuneOptions.

Compatibility Considerations

If you have scripts that use the ScalingOrder option of systuneOptions, set the
ScalingOrder property of TuningGoal.Margins instead.

http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.gain-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.variance-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.loopshape-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.gain-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.weightedgain-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.minloopgain-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.maxloopgain-class.html
http://www.mathworks.com/help/releases/R2014a/robust/ref/tuninggoal.margins-class.html

R2014a

4-6

Improved control system tuning of Simulink models with systune or
looptune functions using slTuner interface (with Simulink Control
Design)

Use the new slTuner interface for tuning control systems in Simulink models. This
interface replaces slTunable. The slTuner interface allows you to:

• Tune model blocks and subsystems to meet tuning goals using the systune and
looptune functions.

• Perform robust tuning of a controller against a set of plant models using systune.
You can configure an slTuner interface to vary model parameter values and
operating points. When you call systune for the interface, the software returns a
control system that satisfies the tuning goals for all the specified model variations.

• Validate the controller design by examining the transfer function for relevant I/
O sets using the getIOTransfer, getLoopTransfer, getSensitivity, and
getCompSensitivity functions.

slTuner, similar in design to slLinearizer, simplifies I/O management in the controller
tuning and validation workflow. You specify signals of interest as analysis points. You
can use these analysis points to configure design requirements and specify linearization
inputs/outputs when you extract transfer functions.

For more information on command-line tuning of Simulink models with slTuner, see:

• Programmatic Control System Tuning

Loop-Shaping Design

Compatibility Considerations

The slTunable interface will continue to work for backward compatibility. However,
only the slTuner interface will be supported and enhanced in future releases. Therefore,
adoption of the slTuner interface is strongly recommended.

For documentation of the slTunable interface, see slTunable in the R2013b
documentation.

http://www.mathworks.com/help/releases/R2014a/slcontrol/ug/sltuner.html
http://www.mathworks.com/help/releases/R2014a/slcontrol/ug/sllinearizer.html
http://www.mathworks.com/help/releases/R2014a/robust/programmatic-control-system-tuning.html
http://www.mathworks.com/help/releases/R2014a/robust/basic-tuning.html
http://www.mathworks.com/help/releases/R2013b/toolbox/slcontrol/ug/sltunableclass.html

R2013b
Version: 5.0

New Features

Bug Fixes

Compatibility Considerations

R2013b

5-2

Automatic tuning of gain-scheduled control systems with systune and
looptune commands

You can now use systune and looptune to automatically tune control systems in which
plant dynamics change with operating conditions or time. In such gain-scheduled control
systems, the controller gains vary as a function of one or more scheduling variables.
You parameterize the dependency of controller gains on the scheduling variables.
The software automatically tunes the coefficients of that parameterization so that the
control system meets the tuning requirements you specify over the entire range of plant
operating conditions. The new gainsurf command helps you parameterize your controller
gains as functions of scheduling variables.

Several new examples illustrating the workflow for gain-scheduled tuning, including:

• Tuning of Gain-Scheduled Three-Loop Autopilot
• Gain Scheduled Control Of a Chemical Reactor

For additional information about tuning gain-scheduled controllers, see Gain-Scheduled
Controllers.

Automatic tuning of discrete-time control systems with systune and
looptune commands

You can now use systune and looptune for automatic tuning of discrete-time control
systems. This capability includes both:

• Control systems represented by discrete-time generalized LTI models (genss models
with Ts property not equal to zero).

• Control systems represented by an slTunable interface to a Simulink mode. Set the
Ts property of the slTunable interface to the sampling time at which you want to
linearize the model.

To tune a discrete-time control system, use the same procedure and command syntax and
you use to tune a continuous-time control system. For examples of discrete-time tuning,
see:

• Digital Control of Power Stage Voltage
• MIMO Control of Diesel Engine

http://www.mathworks.com/help/releases/R2013b/robust/ref/gainsurf.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/tuning-of-gain-scheduled-three-loop-autopilot.html
examples/gain-scheduled-control-of-a-chemical-reactor.html
http://www.mathworks.com/help/releases/R2013b/robust/gain-scheduled-controller-tuning.html
http://www.mathworks.com/help/releases/R2013b/robust/gain-scheduled-controller-tuning.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/digital-control-of-power-stage-voltage.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/mimo-control-of-diesel-engine.html

5-3

Sensitivity, overshoot, minimum and maximum loop gain requirements
for control system tuning with looptune and systune

New TuningGoal requirement objects allow you to specify a variety of tuning objectives
for automated tuning of fixed-structure control systems with systune and looptune.
New tuning requirements include:

• TuningGoal.Sensitivity — Constraint on sensitivity to disturbance
• TuningGoal.Overshoot — Constraint on overshoot in step response
• TuningGoal.MinLoopGain — Minimum loop gain constraint
• TuningGoal.MaxLoopGain — Maximum loop gain constraint

Additionally, TuningGoal.LoopShape has two new syntaxes. These syntaxes allow you
to specify a target crossover frequency or range of crossover frequencies for an open-loop
response in your control system.

For more information about these TuningGoal requirement objects see the reference
pages for each requirement object, and:

• Using Design Requirement Objects
• Specifying Design Requirements for systune
• Performance and Robustness Specifications for looptune

looptuneSetup command for switching from looptune to systune
to use additional systune functionality

The new looptuneSetup command provides a bridge between the tuning commands
looptune and systune. looptuneSetup takes the argument list for looptune and
constructs an equivalent argument list for systune. The looptuneSetup command is
valid for systems represented in either MATLAB or Simulink.

You can use this command to switch from looptune to systune to take advantage of
the additional flexibility and functionality of systune. For example, looptune requires
that you tune all channels of a MIMO feedback loop to the same target bandwidth.
Converting to systune allows you to specify different crossover frequencies and
loop shapes for each loop in your control system. Also, looptune treats all tuning
requirements as soft requirements, optimizing them but not requiring that any
constraint be exactly met. Converting to systune allows you to enforce some tuning
requirements as hard constraints, while treating others as soft requirements.

http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.sensitivityclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.overshootclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.minloopgainclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.maxloopgainclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.loopshapeclass.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/performance-and-robustness-specifications-for-systune.html
http://www.mathworks.com/help/releases/R2013b/robust/gs/performance-and-robustness-specifications.html

R2013b

5-4

You can also use looptuneSetup to probe into the tuning requirements that looptune
implicitly imposes. When you use looptune, you specify a target loop bandwidth and
stability margins. looptune expresses these as hard and soft tuning constraints,
specified as TuningGoal objects. You can use looptuneSetup to examine these
constraints. After examining the constraints, you can then alter them and pass them to
systune for further tuning.

For more information, see the following reference pages:

• looptuneSetup
• slTunable.looptuneSetup

hinfnorm command for computing H
∞
 norm

The new hinfnorm command computes the H∞ norm of SISO or MIMO systems. For
SISO systems, the H∞ norm is defined as the largest value of the frequency response
magnitude. For MIMO systems, H∞ norm is the largest singular value across frequencies.

For more information, see the hinfnorm reference page.

Some properties of TuningGoal requirements renamed

The following properties of TuningGoal requirement objects are renamed to better
reflect their purpose and uses:

Object Previous Property Name New Property Name

TuningGoal.LoopShape LoopTransfer Location

TuningGoal.Margins LoopTransfer Location

TuningGoal.Tracking ReferenceInput Input

TuningGoal.Tracking TrackingOutput Output

Compatibility Considerations

If you have scripts or functions that use any of these properties, consider updating your
code to use the new property names instead. Using the previous property names does not
generate an error in this release, but the names might be removed in a future release.

http://www.mathworks.com/help/releases/R2013b/robust/ref/looptunesetup.html
http://www.mathworks.com/help/releases/R2013b/slcontrol/ug/sltunable.looptunesetup.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/hinfnorm.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.loopshapeclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.marginsclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.trackingclass.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/tuninggoal.trackingclass.html

5-5

Power iteration method option for structured singular value computation
with mussv

A new 'p' option to the mussv command allows you to specify a power iteration method
for computing the lower bound on structured singular values (μ values). This method is
recommended for cases of complex uncertainty. When at least one of the uncertain blocks
specified in the block diagonal matrix structure is complex, mussv now uses the power
iteration method by default.

For pure real uncertainty, mussv uses a gain-based lower bound algorithm by default.

For more information, see the mussv reference page.

Compatibility Considerations

Previously, mussv used a gain-based lower bound algorithm for both pure real and mixed
uncertainty. Therefore, you might now obtain different results for the lower bounds with
mixed uncertainty.

Option to specify feedback sign for stability margin calculation with
ncfmargin

The ncfmargin command includes a new input argument that lets you specify
the sign of the feedback interconnection assumed for the margin calculation.
Use the syntax [marg,freq] = ncfmargin(P,C,sign) or [marg,freq] =
ncfmargin(P,C,sign,tol) to specify a negative or positive feedback interconnection.
For more information, see the ncfmargin reference page.

Compatibility Considerations

Previously, the relative accuracy tol was the third input argument to ncfmargin. If you
have scripts or functions that use the syntax [marg,freq] = ncfmargin(P,C,tol),
update them to use [marg,freq] = ncfmargin(P,C,-1,tol) instead.

http://www.mathworks.com/help/releases/R2013b/robust/ref/mussv.html
http://www.mathworks.com/help/releases/R2013b/robust/ref/ncfmargin.html

R2013a
Version: 4.3

New Features

Bug Fixes

Compatibility Considerations

R2013a

6-2

Minimum damping requirement for closed-loop poles in
TuningGoal.Poles object

You can now specify the minimum damping ratio of closed-loop poles for automated
tuning of fixed-structure control systems with systune or looptune. To do so, create a
TuningGoal.Poles object and set its MinDamping property to the minimum damping
ratio you want to specify. Additionally, you can now use the Focus property to limit
enforcement of the TuningGoal.Poles requirements to poles within a specified
frequency range.

For more information about the TuningGoal.Poles requirement, see the
TuningGoal.Poles reference page. For more information about using requirement objects
to tune control systems, see Using Design Requirement Objects.

TuningGoal.Rejection object for specifying disturbance rejection
requirement

You can now specify a disturbance rejection requirement for automated tuning
of fixed-structure control systems with systune or looptune. The new
TuningGoal.Rejection object allows you to specify a frequency-dependent attenuation
factor for a disturbance injected at a specified location in the control system.

For more information about the TuningGoal.Rejection requirement, see the
TuningGoal.Rejection reference page. For an example, see PID Tuning for Setpoint
Tracking vs. Disturbance Rejection.

For more information about using requirement objects to tune control systems generally,
see Using Design Requirement Objects.

looptune returns detailed results from multiple random starts

The info output of looptune now includes detailed results from each optimization
run. When you use the RandomStart option of looptuneOptions to perform multiple
optimization runs, the field info.Runs of the info output now contains a struct array.
Each entry in the struct array includes results from the corresponding optimization run
such as minimum constraint values and tuned block values. You can optionally use this
information to analyze independent optimization results.

See the looptune reference page for more information.

http://www.mathworks.com/help/releases/R2013a/robust/ref/tuninggoal.polesclass.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2013a/robust/ref/tuninggoal.rejectionclass.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/pid-tuning-for-setpoint-tracking-vs-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/pid-tuning-for-setpoint-tracking-vs-disturbance-rejection.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2013a/robust/ref/looptune.html

6-3

Compatibility Considerations

The Extra field of info is now renamed to Runs. If you use info.Extra in a script,
update your code to use info.Runs instead.

Additional automated tuning examples

New examples in this release include:

• Multi-Loop Control of a Helicopter
• Fault-Tolerant Control of a Passenger Jet
• Multi-Loop PID Control of a Robot Arm

http://www.mathworks.com/help/releases/R2013a/robust/gs/multi-loop-control-of-a-helicopter.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/fault-tolerant-control-of-a-passenger-jet.html
http://www.mathworks.com/help/releases/R2013a/robust/gs/multi-loop-pid-control-of-a-robot-arm.html

R2012b
Version: 4.2

New Features

Bug Fixes

Compatibility Considerations

R2012b

7-2

systune command for multiobjective tuning with soft and hard
constraints

The new systune command allows automated tuning of fixed-structure control systems to
high-level tuning objectives.

To use systune, you specify tuning objectives such as reference tracking, disturbance
rejection, or stability margins. You can specify both soft requirements (objectives) and
hard requirements (constraints). systune automatically tunes the parameters of your
control system to meet the requirements.

You can use systune to tune control systems modeled in either MATLAB or Simulink.

For more information, see:

• Tuning Control Systems with SYSTUNE
• Tuning Control Systems in Simulink
• Automated Tuning
• The systune reference page

H2 performance, stability margin, pole location, and disturbance rejection
requirements

New TuningGoal requirement objects allow you to specify a variety of tuning objectives
for automated tuning of fixed-structure control systems with systune and looptune.
New tuning requirements include:

• TuningGoal.Margins — Tune to stability margin requirements by specifying
minimum gain and phase margins for any feedback loop in your control system.

• TuningGoal.Poles — Constrain closed-loop dynamics of your control system.
• TuningGoal.StableController — Constrain dynamics or ensure stability of tunable

elements.
• TuningGoal.WeightedGain — Limit on frequency-weighted gain from specified inputs

to specified outputs in your control system.
• TuningGoal.Variance and TuningGoal.WeightedVariance — Tune to H2

performance requirements by minimizing or constraining variance amplification.
TuningGoal.Variance specifies the maximum output variance for a unit-

http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/tuning-control-systems-with-systune.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/tuning-control-systems-in-simulink.html
http://www.mathworks.com/help/releases/R2012b/robust/automated-tuning.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/systune.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.marginsclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.polesclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.stablecontrollerclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.weightedgainclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.varianceclass.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.weightedvarianceclass.html

7-3

variance input signal from a specified input to a specified output in your control
system. TuningGoal.WeightedVariance imposes a frequency-weighted variance
amplification limit.

For more information about these TuningGoal requirement objects see the reference
pages for each requirement object, and:

• Using Design Requirement Objects
• Specifying Design Requirements for systune
• Performance and Robustness Specifications for looptune

Robust tuning of one controller against a set of plant models

The new systune command can simultaneously tune the parameters of multiple models
or control configurations. This feature allows you, for example, to tune a single controller
against a range of plant models, to help ensure that the tuned control system is robust
against parameter variations. As another example, you can tune for reliable control by
simultaneously to multiple plant configurations that represent different failure modes of
a system. In either case, systune finds values for tunable parameters that best satisfy
the specified tuning objectives for all models.

For more information, see Tune Controller Against Set of Plant Models.

Option to constrain tuned parameter values and to restrict some tuning
requirements to a frequency band

You can now optionally impose lower and upper bounds on tunable parameters when
tuning fixed-structure control systems using systune, looptune, or hinfstruct. For
example, you can constrain a gain to always be positive, or impose a maximum value on a
filter time constant.

To impose bounds on tunable parameters, set the Maximum and Minimum properties of
the parameter in the corresponding Control Design Block. For example, create a scalar
gain block and constrain the gain to be positive:

gainblock = ltiblock.gain('gainblock',1,1);

gainblock.Gain.Minimum = 0;

Then, use gainblock as a component in a tunable genss model of the control system.
When you tune the control system, the tuning command enforces the constraint.

http://www.mathworks.com/help/releases/R2012b/robust/gs/using-design-requirement-objects.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/performance-and-robustness-specifications-for-systune.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/performance-and-robustness-specifications.html
http://www.mathworks.com/help/releases/R2012b/robust/gs/tune-controller-against-set-of-plant-models.html

R2012b

7-4

Additionally, you can limit the range of frequencies in which almost any
TuningGoal requirement is enforced for fixed-structure control system tuning
with systune or looptune. The only exceptions are TuningGoal.Variance and
TuningGoal.WeightedVariance.

For example, you can enforce a stability margin requirement in a frequency band
extending for one decade on each side of the target gain crossover frequency.

To limit the range of frequencies in which a requirement is enforced, use the Focus
property of the TuningGoal requirement object. For example, create a requirement
that limits the gain from an input du to an output u to 10. Limit enforcement of the
requirement to the frequency range 10–1000 rad/s.

Req = TuningGoal.Gain('du','u',10);

Req.Focus = [10 1000];

ltiblock.pid2 and loopswitch objects for tuning two-degree-of-
freedom PID controllers and marking loop opening sites for open-loop
requirements

New Control Design Blocks in Control System Toolbox™ allow you to specify more
control structures and more types of constraints for fixed-structure control system tuning
in MATLAB:

• ltiblock.pid2 — Tunable two-degree-of-freedom PID controller
• loopswitch — Control Design Block for specifying feedback loop opening locations in

a tunable genss model of a control system

For more information, see the ltiblock.pid2 and loopswitch reference pages.

TuningGoal.MaxGain and GainLimit property renamed

The tuning requirement TuningGoal.MaxGain is now called TuningGoal.Gain.
Additionally, the GainLimit property of that tuning requirement is now called MaxGain.

For more information, see the TuningGoal.Gain reference page.

Compatibility Considerations

Replace instances of TuningGoal.MaxGain in your code with TuningGoal.Gain.
Replace references to the GainLimit property with MaxGain.

http://www.mathworks.com/help/releases/R2012b/control/ref/ltiblock.pid2.html
http://www.mathworks.com/help/releases/R2012b/control/ref/loopswitch.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/tuninggoal.gainclass.html

7-5

Options in hinfstructOptions and looptuneOptions renamed or
removed

The following options in hinfstructOptions and looptuneOptions are changed:

• SpecRadius is now called MaxFrequency. Additionally, NaN is no longer a supported
value for this option. For an unconstrained MaxFrequency value, use Inf.

• StableOffset is now called MinDecay.
• StableRadius option has no effect.
• StableExclude option of hinfstructOptions has no effect. hinfstruct now

automatically excludes from stability tests Control Design Blocks such as weighting
functions or multipliers. These blocks do not affect the closed-loop stability of the
actual control system to tune.

For more information about these options, see the hinfstructOptions and
looptuneOptions reference pages.

Compatibility Considerations

If you use any of the affected options in your code, update your code to reflect the current
names and supported values.

http://www.mathworks.com/help/releases/R2012b/robust/ref/hinfstructoptions.html
http://www.mathworks.com/help/releases/R2012b/robust/ref/looptuneoptions.html

R2012a
Version: 4.1

New Features

Bug Fixes

R2012a

8-2

Parallel Computing Support for looptune and hinfstruct

If you have Parallel Computing Toolbox™ software installed, you can use parallel
computing to speed up tuning of fixed-structure control systems with the looptune or
hinfstruct commands. When you run multiple randomized looptune or hinfstruct
optimization starts, parallel computing speeds up tuning by distributing the optimization
runs among MATLAB workers.

For more information about using parallel computing to speed up looptune or
hinfstruct tuning, see:

• Speed Up Tuning with Parallel Computing Toolbox Software in the Robust Control
Toolbox™ documentation.

• The Robust Control Toolbox demo Using Parallel Computing to Accelerate the Tuning
Process.

For more information about tuning fixed-structure control systems with looptune or
hinfstruct, see Tuning Fixed Control Architectures in the Robust Control Toolbox
documentation.

Faster and More Accurate H-infinity Norm Computation Using SLICOT
Algorithms

H∞ norm calculations now use the SLICOT library of numerical algorithms. These
algorithms improve the speed and accuracy of functions such as hinfstruct and
looptune.

For more information about the SLICOT library, see http://slicot.org.

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/btc3qyp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
http://slicot.org/

R2011b
Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

R2011b

9-2

looptune Tunes Fixed-Structure Control Systems

Use looptune to tune fixed-structure control systems to meet your requirements. To
use looptune, specify design requirements such as loop bandwidth, stability margin,
setpoint tracking, or target loop shape. looptune automatically tunes the parameters of
your controller to meet the specified requirements.

The requirements objects TuningGoal.MaxGain, TuningGoal.Tracking, and
TuningGoal.LoopShape let you express your design requirements directly. You do not
have to first convert them to weighting functions or mathematical constraints on an
optimization problem.

You can use loopview to validate the performance the performance of the tuned control
structure against your specified design requirements.

For more information, see Tuning Fixed Control Architectures and the looptune and
loopview reference pages.

Control System Tuning for Simulink Models with looptune or hinfstruct
Using slTunable Interface

If you have Simulink Control Design software, you can use tuning commands, such
as slTunable.looptune and hinfstruct, to tune control systems modeled in Simulink.
The slTunable object provides an interface between your Simulink model and these
commands.

Use slTunable to specify information about your control structure and parametrization.
slTunable also automates tasks such as linearizing the Simulink model, parametrizing
the tunable blocks of your system, and applying tuned parameter values to the model.
After you create and configure an slTunable object for your control architecture, you
can tune the control system using slTunable.looptune or hinfstruct.

For more information, see Tuning Fixed Control Architectures and the following demos:

• Tuning of a Digital Motion Control System
• Decoupling Controller for a Distillation Column
• Tuning of a Two-Loop Autopilot
• Tuning of Cascaded PID Loops
• Loop Shaping Design with HINFSTRUCT
• Fixed-Structure Autopilot for a Passenger Jet

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/looptune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/tuninggoal.maxgainclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/tuninggoal.trackingclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/tuninggoal.loopshapeclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/loopview.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/looptune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/loopview.html
http://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunable.looptune.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/slcontrol/ug/sltunableclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html

9-3

wcgainplot for Visualizing Worst-Case Gains

wcgainplot plots the nominal, sampled, and worst-case gains of uncertain systems as a
function of frequency. Use wcgainplot for visual analysis of uncertain systems.

For more information, see the wcgainplot reference page.

Functionality Being Removed or Changed

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

umat object can no
longer contain ultidyn
or udyn uncertainty.

• Presence of ultidyn
or udyn uncertain
elements forces
model type to uss
or ufrd rather than
umat.

• Mixing ureal or
ucomplex models
with udyn or
ultidyn objects
produces uss instead
of umat.

Expect a model type of
uss or ufrd instead
of umat when working
with udyn or ultidyn
uncertain elements.

Update code to work
with uss or ufrd
instead of umat when
udyn or ultidyn
elements are present.

uss(sys_frd), where
sys_frd is a frd
model object no longer
converts sys_frd to
ufrd.

Errors. ufrd(sys_frd). Replace
uss(sys_frd) with
ufrd(sys_frd).

ufrd(udat,freq,...)

no longer constructs an
uncertain frd model
from the umat object
udat.

Converts udat to a ufrd
object with frequencies
freq.

Use
frd(udat,freq,...)

to construct an
uncertain frd model
from the umat object
udat.

Replace
ufrd(udat,freq,...)

with
frd(udat,freq,...).

frd(sys_uss,w)

where sys_uss is a
uss model.

Warns; returns frd
model containing data
based on nominal
response of sys_uss.

ufrd(sys_uss,w) to
obtain a ufrd model.

Replace
frd(sys_uss,w) with
ufrd(sys_uss,w).

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/wcgainplot.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/umat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ultidyn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/udyn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/uss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ufrd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/frd.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ufrd.html

R2011b

9-4

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

Nominal value of
ultidyn object.

Nominal value is ss
model object.

None. Update code to work
with ss model objects
when working nominal
value of ultidyn.

Applied to array of
uncertain models,
default substitution is
'-once'.

Use '-batch'
to perform batch
substitution on
uncertain model
arrays.

Replace usubs(...)
with usubs(...,'-
batch').

usubs.

usubs(M,

{a1;a2;...},

{v1;v2;...}) returns
error.

usubs(M,a1,v1,a2,

v2,...).
Replace usubs(M,
{a1;a2;...},

{v1;v2;...}) with
usubs(M,a1,v1,a2,

v2,...).
usample(sys,'a',na,

'b',nb) where
uncertain element b
does not exist in sys.

Returns na-by-nb array
with constant values
across nb dimension,
instead of na-by-1 array.

None. Update code to reflect
correct dimensionality.

wcgopt. Still runs. wcgainOptions or
wcmarginOptions.

Replace wcgopt with
wcgainOptions or
wcmarginOptions.

For ufrd models,
BadUncertainValues

field of Info output
returns Nf-by-1 struct
array, where Nf is the
number of frequency
points.

None. Update code to
work with Nf-by-1
struct array for
BadUncertainValues

instead of Nf-by-1 cell
array.

robuststab and
robustperf.

For nominally unstable
models, performance
margin is zero (instead
of a negative value).

None. Update code to reflect
correct performance
margin .

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/usubs.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/wcgainoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/wcmarginoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robuststab.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robustperf.html

9-5

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

robopt. Still runs. robuststabOptions or
robustperfOptions.

Replace robopt with
robuststabOptions

or
robustperfOptions.

actual2normalized. First output argument
is normalized uncertain
block value. The second
output argument is
normalized distance
between block value and
nominal value.

[NV,ndist] =

actual2normalized(

BLK,AV).

Use second output
argument ndist for
normalized distance.

reshape(unc_sys,S). S does not include the
I/O size of the models
in the array unc_sys.
For example, if unc_sys
is a 6-by-1 array of 2-
output, 4-input models,
reshape(unc_sys,[2

3]) converts unc_sys
to a 2-by-3 array.

None. Remove I/O size
dimensions from
reshape on uncertain
model arrays.

diag(uss_sys) where
uss_sys is a uss
model.

Errors. None. Remove
diag(uss_sys).

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robuststaboptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/robustperfoptions.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/actual2normalized.html

R2011a
Version: 3.6

New Features

Bug Fixes

R2011a

10-2

Enhanced Workflow for H-Infinity Synthesis of Fixed-Structure Control
Systems

New Generalized LTI models in Control System Toolbox allow you to model control
systems with tunable parameters. Using these models simplifies controller tuning with
hinfstruct. You can model a closed-loop transfer function, including tunable parameters,
as a generalized state-space (genss) model and directly tune the parameters to minimize
the closed-loop gain. The hinfstruct command can tune any fixed-structure SISO or
MIMO control system using H∞ synthesis techniques.

Additionally, new realp and genmat objects let you create parametric expressions.
You can use such expressions to create custom tunable components. For example, you
can define a low-pass filter parametrized by its cutoff frequency, or an observer-based
controller parametrized by the state-feedback and observer gains.

For more information about creating tunable Generalized LTI models, see Models with
Tunable Coefficients in the Control System Toolbox User's Guide.

For more information about H∞ tuning with hinfstruct, see Tuning Fixed Control
Architectures in the Robust Control Toolbox Getting Started Guide.

For examples of designing controllers for several different architectures using
hinfstruct, see the following updated and new demos:

• Loop Shaping Design with HINFSTRUCT (updated)
• Tuning of a Two-Loop Autopilot (updated)
• Decoupling Controller for a Distillation Column (updated)
• Multi-Loop PID Control of a Robot Arm (updated)
• Fixed-Structure Autopilot for a Passenger Jet (new)

http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bs_5hic.html#bsxmvii
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/realp.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/genmat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsuyqal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ug/bsuyqal.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html

R2010b
Version: 3.5

New Features

Bug Fixes

R2010b

11-2

New Commands for H-Infinity Synthesis of Fixed-Structure Control
Systems

New commands in this release allow you to tune fixed-structure SISO and MIMO control
systems using the techniques of H∞ synthesis.

The new hinfstruct command lets you use the frequency-domain methods of H∞ synthesis
to tune control systems with a broad range of architectures and controller structures. For
example, you can tune:

• Fixed-order, fixed-structure controllers, such as pure gains, PID controllers, or fixed-
order transfer function or state-space models

• Single feedback-loop architectures with multiple tunable elements, such as a PID
controller plus a filter

• Multiple feedback-loop architectures with multiple tunable elements

Specify the tunable elements of your system using the new parametrized Control Design
blocks ltiblock.gain, ltiblock.pid, ltiblock.tf, and ltiblock.ss.

For examples of designing controllers for several different architectures using
hinfstruct, see the following new demos:

• Loop Shaping Design with HINFSTRUCT
• Tuning of a Fixed-Structure Autopilot
• Decoupling Controller for a Distillation Column
• Multi-Loop PID Control of a Robot Arm

For more information, see Tuning Fixed Control Architectures in the Robust Control
Toolbox Getting Started Guide.

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/hinfstruct.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.gain.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.pid.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.tf.html
http://www.mathworks.com/help/releases/R2012a/toolbox/control/ref/ltiblock.ss.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/gs/bsxd__3.html

R2010a
Version: 3.4.1

Bug Fixes

R2009b
Version: 3.4

New Features

Bug Fixes

Compatibility Considerations

R2009b

13-2

New Option to Improve Robust Performance by Accounting for Real
Uncertain Parameters

You can now improve robust performance by accounting for real uncertain parameters
when designing controllers using µ-synthesis. The user-defined options you use in the
dksyn command now includes a new option MixedMU. Set this option to 'on' to account
for real uncertain parameters in your system. For more information, see the dkitopt, and
dksyn reference pages.

New Command to Linearize Simulink Models with Uncertainty

If you have Simulink Control Design software installed, you can take model uncertainty
into account when linearizing a Simulink model. You can then use the resulting
uncertain linearized model (uss object) to perform linear analysis and robust control
design.

If your model already contains Uncertain State Space blocks, use the new ulinearize
command to obtain an uss model. If you want to account for uncertainty in your linear
analysis without using Uncertain State Space blocks, you can specify individual Simulink
blocks to linearize to an uncertain variable. For more information, see "Computing
Uncertain State-Space Models from Simulink Models" in the Robust Control Toolbox
User's Guide.

New Interface for Simulating Effects of Uncertainty in Simulink Models

This version of the product provides a new interface to simulate the effects of uncertainty
in Simulink models. The interface includes the following:

• Uncertain State Space block to specify uncertain system in Simulink. You should
replace USS System blocks in your existing models with the Uncertain State Space
block. To do so, run the slupdate command on your models.

• ufind command to extract all uncertain variables from a Simulink model.
• usample command to generate random values of these uncertain variables.

For more information on simulating the effects of uncertainty using the new interface,
see "Simulating Effects of Uncertainty" in the Robust Control Toolbox User's Guide.

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/dkitopt.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/dksyn.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ufind.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/usample.html

13-3

New Command to Model Multiple LTI Responses as One Uncertain System

This version of the product includes a new ucover command that lets you model a family
of LTI responses as one uncertain system. For more information, see the ucover reference
page.

New and Updated Demos

The following new and updated demos illustrate use of the new features:

• "Control of Spring-Mass-Damper Using Mixed mu-Synthesis" shows use of the new
MixedMU option and dksyn command for mixed-mu synthesis.

• "Linearization of Simulink Models with Uncertainty" shows how to compute uncertain
state-space models using ulinearize and Simulink Control Design software.

• "Robustness Analysis in Simulink" uses the new interface for simulating effects of
uncertainty in Simulink models.

• "Simultaneous Stabilization Using Robust Control" and "Modeling a Family of
Responses as an Uncertain System" show use of the ucover command.

• "First-Cut Robust Design" shows use of the usample, ucover and dksyn commands.

To access the demos, type

demo('toolbox','robust control')

Functions, Properties and Blocks Being Removed

Function,
Property or
Block Name

What Happens When You

Use Function or Property?

Use This Instead Compatibility Considerations

usiminfo Still runs ufind See “New Interface for
Simulating Effects of Uncertainty
in Simulink Models” on page
13-2.

usimfill Still runs ufind See “New Interface for
Simulating Effects of Uncertainty
in Simulink Models” on page
13-2.

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ucover.html

R2009b

13-4

Function,
Property or
Block Name

What Happens When You

Use Function or Property?

Use This Instead Compatibility Considerations

usimsamp Still runs usample See “New Interface for
Simulating Effects of Uncertainty
in Simulink Models” on page
13-2.

USS System
block

Still runs Uncertain State
Space block

See “New Interface for
Simulating Effects of Uncertainty
in Simulink Models” on page
13-2.

ltiarray2uss Still runs ucover See “New Command to Model
Multiple LTI Responses as One
Uncertain System” on page
13-3.

R2009a
Version: 3.3.3

Bug Fixes

R2008b
Version: 3.3.2

Bug Fixes

R2008a
Version: 3.3.1

New Features

R2008a

16-2

Ability to Use LOOPMARGIN with Simulink

This version of Robust Control Toolbox software lets you analyze the robustness of
nonlinear Simulink models using the LOOPMARGIN command.

If you have the Simulink Control Design product installed, you can perform stability
margin analysis of a Simulink model by passing the model name and a point within that
model to the LOOPMARGIN command.

R2007b
Version: 3.3

No New Features or Changes

R2007a
Version: 3.2

New Features

R2007a

18-2

New Simulink Blocks

• USS System — This Robust Control Toolbox version introduces a new Simulink
block, USS System. You can use this block to import uncertain systems into Simulink
models.

• Multiplot Graph — Plot multiple signals in one figure.

R2006b
Version: 3.1.1

New Features

R2006b

19-2

New Function ltiarray2uss

This Robust Control Toolbox version introduces a new function, ltiarray2uss. This
function constructs an uncertain state-space model from an LTI array.

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/ltiarray2uss.html

R2006a
Version: 3.1

No New Features or Changes

R14SP3
Version: 3.0.2

No New Features or Changes

R14SP2
Version: 3.0.1

New Features

R14SP2

22-2

mussvunwrap Is Renamed

mussvunwrap has been renamed. It is now called mussvextract.

New Functions actual2normalized and normalized2actual

This Robust Control Toolbox version introduced two new functions:

• actual2normalized — Calculate normalized distance between nominal value and
given value for uncertain atom.

• normalized2actual — Convert value for atom in normalized coordinates to
corresponding actual value.

http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/mussvextract.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/actual2normalized.html
http://www.mathworks.com/help/releases/R2012a/toolbox/robust/ref/normalized2actual.html

